310 research outputs found

    Tree species, crown cover, and age as determinants of the vertical distribution of airborne LiDAR returns

    Full text link
    Light detection and ranging (LiDAR) provides information on the vertical structure of forest stands enabling detailed and extensive ecosystem study. The vertical structure is often summarized by scalar features and data-reduction techniques that limit the interpretation of results. Instead, we quantified the influence of three variables, species, crown cover, and age, on the vertical distribution of airborne LiDAR returns from forest stands. We studied 5,428 regular, even-aged stands in Quebec (Canada) with five dominant species: balsam fir (Abies balsamea (L.) Mill.), paper birch (Betula papyrifera Marsh), black spruce (Picea mariana (Mill.) BSP), white spruce (Picea glauca Moench) and aspen (Populus tremuloides Michx.). We modeled the vertical distribution against the three variables using a functional general linear model and a novel nonparametric graphical test of significance. Results indicate that LiDAR returns from aspen stands had the most uniform vertical distribution. Balsam fir and white birch distributions were similar and centered at around 50% of the stand height, and black spruce and white spruce distributions were skewed to below 30% of stand height (p<0.001). Increased crown cover concentrated the distributions around 50% of stand height. Increasing age gradually shifted the distributions higher in the stand for stands younger than 70-years, before plateauing and slowly declining at 90-120 years. Results suggest that the vertical distributions of LiDAR returns depend on the three variables studied

    Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data

    Full text link
    This is an author's accepted manuscript of an article published in “Remote Sensing Letters", Volume 5, Issue 4, 2014; copyright Taylor & Francis; available online at: http://www.tandfonline.com/doi/abs/10.1080/2150704X.2014.903350[EN] When processing scanning LiDAR data, it is commonly assumed that the extracted full-waveform LiDAR pulse registers truly vertical information of forest canopies. This assumption may lead to uncertain results for the spatiotemporal analysis of the waveforms due to off-nadir scanning angles and varying trajectories travelled by the pulses in overlapping strips. In this letter, we investigate these assumptions and undertake some preliminary analysis to overcome their impacts on forest-based LiDAR analyses. Our results demonstrate that for a standard LiDAR forest acquisition programme in Oregon, USA, most of the hits (83%) are acquired off-nadir, which leads to positional displacements on the ground of the full-waveforms of about 0.20 m for each 1-m height increment. We propose an approach to synthetize multiple waveform data into composite waveforms containing the vertical profile of vegetation for a given location. This approach is based on partitioning the aboveground vertical space into voxels and using the maximum full-waveform intensity value to construct new full-waveforms comprising the vertical information of the various waveforms crossing over a location. Our initial results indicate that deriving spatiotemporal metrics from the composite pseudo-vertical full-waveforms produces a more consistent response across adjacent height levels, which in turn enables a more complete characterization and more vegetation structure to be retrieved. We conclude that this type of pseudo-vertical full-waveform analysis is necessary to more fully understand the impact of the return signals from tree crownsThis paper was developed as a result of a visiting scholar grant funded by the Erasmus Mundus Programme of the European Commission under the Transatlantic Partnership for Excellence in Engineering – TEE Project. The authors also wish to thank the Generalitat Valenciana for the mobility grant [BEST/2012/235] and the Panther Creek Remote Sensing and Research cooperative programme for the data provided for this research.Hermosilla, T.; Coops, N.; Ruiz Fernández, LÁ.; Moskal, M. (2014). Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data. Remote Sensing Letters. 5(4):332-341. https://doi.org/10.1080/2150704X.2014.903350S33234154Baltsavias, E. . (1999). Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 199-214. doi:10.1016/s0924-2716(99)00015-5Blair, J. B., Rabine, D. L., & Hofton, M. A. (1999). The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2-3), 115-122. doi:10.1016/s0924-2716(99)00002-7BOUDREAU, J., NELSON, R., MARGOLIS, H., BEAUDOIN, A., GUINDON, L., & KIMES, D. (2008). Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sensing of Environment, 112(10), 3876-3890. doi:10.1016/j.rse.2008.06.003Bretar, F., M. Pierrot-Deseilligny, and M. Roux. 2004. “Solving the Strip Adjustment Problem of 3D Airborne Lidar Data.” IEEE International Geoscience and Remote Sensing Symposium Proceedings, Anchorage, AK, September 20–24, 4734–4737.Buddenbaum, H., Seeling, S., & Hill, J. (2013). Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. International Journal of Remote Sensing, 34(13), 4511-4524. doi:10.1080/01431161.2013.776721Carabajal, C. C., & Harding, D. J. (2005). ICESat validation of SRTM C-band digital elevation models. Geophysical Research Letters, 32(22), n/a-n/a. doi:10.1029/2005gl023957Drake, J. B., Dubayah, R. O., Clark, D. B., Knox, R. G., Blair, J. B., Hofton, M. A., … Prince, S. (2002). Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 79(2-3), 305-319. doi:10.1016/s0034-4257(01)00281-4Ferraz, A., G. Goncalves, P. Soares, M. Tome, C. Mallet, S. Jacquemoud, F. Bretar, and L. Pereira. 2012. “Comparing Small-footprint LiDAR and Forest Inventory Data for Single Strata Biomass Estimation – A Case Study over a Multi-layered Mediterranean Forest.” IEEE Geoscience and Remote Sensing Symposium (IGARSS), Munich, July 22–27, 6384–6387.Hall, S. A., Burke, I. C., Box, D. O., Kaufmann, M. R., & Stoker, J. M. (2005). Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests. Forest Ecology and Management, 208(1-3), 189-209. doi:10.1016/j.foreco.2004.12.001Harding, D. J. (2005). ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters, 32(21). doi:10.1029/2005gl023471Heinzel, J., & Koch, B. (2011). Exploring full-waveform LiDAR parameters for tree species classification. International Journal of Applied Earth Observation and Geoinformation, 13(1), 152-160. doi:10.1016/j.jag.2010.09.010Hermosilla, T., Ruiz, L. A., Kazakova, A. N., Coops, N. C., & Moskal, L. M. (2014). Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data. International Journal of Wildland Fire, 23(2), 224. doi:10.1071/wf13086Höfle, B., Hollaus, M., & Hagenauer, J. (2012). Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 134-147. doi:10.1016/j.isprsjprs.2011.12.003HYDE, P., DUBAYAH, R., PETERSON, B., BLAIR, J., HOFTON, M., HUNSAKER, C., … WALKER, W. (2005). Mapping forest structure for wildlife habitat analysis using waveform lidar: Validation of montane ecosystems. Remote Sensing of Environment, 96(3-4), 427-437. doi:10.1016/j.rse.2005.03.005Kim, Y., Yang, Z., Cohen, W. B., Pflugmacher, D., Lauver, C. L., & Vankat, J. L. (2009). Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sensing of Environment, 113(11), 2499-2510. doi:10.1016/j.rse.2009.07.010Koetz, B., Morsdorf, F., Sun, G., Ranson, K. J., Itten, K., & Allgower, B. (2006). Inversion of a Lidar Waveform Model for Forest Biophysical Parameter Estimation. IEEE Geoscience and Remote Sensing Letters, 3(1), 49-53. doi:10.1109/lgrs.2005.856706Kronseder, K., Ballhorn, U., Böhm, V., & Siegert, F. (2012). Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 18, 37-48. doi:10.1016/j.jag.2012.01.010Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., & Harding, D. (1999). Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests. Remote Sensing of Environment, 70(3), 339-361. doi:10.1016/s0034-4257(99)00052-8Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Del Bom Espirito-Santo, F., … de Oliveira, R. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32(22), n/a-n/a. doi:10.1029/2005gl023971Mallet, C., & Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-art. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 1-16. doi:10.1016/j.isprsjprs.2008.09.007Ni-Meister, W., Jupp, D. L. B., & Dubayah, R. (2001). Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Transactions on Geoscience and Remote Sensing, 39(9), 1943-1958. doi:10.1109/36.951085Pang, Y., Lefsky, M., Sun, G., & Ranson, J. (2011). Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar. Remote Sensing of Environment, 115(11), 2798-2809. doi:10.1016/j.rse.2010.08.025Reitberger, J., Krzystek, P., & Stilla, U. (2008). Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. International Journal of Remote Sensing, 29(5), 1407-1431. doi:10.1080/01431160701736448Reitberger, J., Schnörr, C., Krzystek, P., & Stilla, U. (2009). 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 561-574. doi:10.1016/j.isprsjprs.2009.04.002Sarrazin, M. J. D., van Aardt, J. A. N., Asner, G. P., McGlinchy, J., Messinger, D. W., & Wu, J. (2012). Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-level species classification and herbaceous biomass modeling in savanna ecosystems. Canadian Journal of Remote Sensing, 37(6), 653-665. doi:10.5589/m12-007SUN, G., RANSON, K., KIMES, D., BLAIR, J., & KOVACS, K. (2008). Forest vertical structure from GLAS: An evaluation using LVIS and SRTM data. Remote Sensing of Environment, 112(1), 107-117. doi:10.1016/j.rse.2006.09.036Van Leeuwen, M., & Nieuwenhuis, M. (2010). Retrieval of forest structural parameters using LiDAR remote sensing. European Journal of Forest Research, 129(4), 749-770. doi:10.1007/s10342-010-0381-4Wu, J., van Aardt, J. A. N., McGlinchy, J., & Asner, G. P. (2012). A Robust Signal Preprocessing Chain for Small-Footprint Waveform LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3242-3255. doi:10.1109/tgrs.2011.2178420Yang, W., Ni-Meister, W., & Lee, S. (2011). Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model. Remote Sensing of Environment, 115(11), 2810-2822. doi:10.1016/j.rse.2010.02.02

    Correction, update, and enhancement of vectorial forestry road maps using ALS data, a pathfinder, and seven metrics

    Get PDF
    Accurate information about forestry roads is a key aspect of forest management in terms of economy (e.g. accessibility, cost, optimal path) and ecology (e.g. wildfire and wildlife protection). In Canada, and in fact, globally, most provincial, state or territory governments maintain vectorial information on the forestry roads under their jurisdiction. However, official maps are not always accurate, may lack road attributes of interest and are not always up-to-date. Airborne Laser Scanning (ALS) has become an established technology to accurately characterize and map broad territories by providing high density 3D point-clouds with, at least, 3 or 4 measurements per square meter. This paper addresses the problem of the automatic updating, fixing, and enhancement of vectorial forestry road maps over large landscapes (¿10000 km2). For this purpose, we developed a production ready, documented and open-source software. From metrics derived from the point-cloud the method produces a raster of road probability. It then uses an existing, inaccurate, map of the road network to define approximate start and end points for each road. Then, a pathfinder retrieves the accurate road shape by computing the least cost path between the two points on the probability raster. Using the accurate road position given by the algorithm, road width and road state are then estimated based the on characteristics of the point-cloud. We demonstrate that our algorithm retrieves the centrelines of roads in a natively vectorial form with an error below 3 m in 95% of the roads using a fully automatic method. The accuracy of the road location allows us to derive other accurate measurements, including the state of the roads

    Assessing the impact of illumination on UAV pushbroom hyperspectral imagery collected under various cloud cover conditions

    Get PDF
    The recent development of small form-factor (<6 kg), full range (400–2500 nm) pushbroom hyperspectral imaging systems (HSI) for unmanned aerial vehicles (UAV) poses a new range of opportunities for passive remote sensing applications. The flexible deployment of these UAV-HSI systems have the potential to expand the data acquisition window to acceptable (though non-ideal) atmospheric conditions. This is an important consideration for time-sensitive applications (e.g. phenology) in areas with persistent cloud cover. Since the majority of UAV studies have focused on applications with ideal illumination conditions (e.g. minimal or non-cloud cover), little is known to what extent UAV-HSI data are affected by changes in illumination conditions due to variable cloud cover. In this study, we acquired UAV pushbroom HSI (400–2500 nm) over three consecutive days with various illumination conditions (i.e. cloud cover), which were complemented with downwelling irradiance data to characterize illumination conditions and in-situ and laboratory reference panel measurements across a range of reflectivity (i.e. 2%, 10%, 18% and 50%) used to evaluate reflectance products. Using these data we address four fundamental aspects for UAV-HSI acquired under various conditions ranging from high (624.6 ± 16.63 W·m2) to low (2.5 ± 0.9 W·m2) direct irradiance: atmospheric compensation, signal-to-noise ratio (SNR), spectral vegetation indices and endmembers extraction. For instance, two atmospheric compensation methods were applied, a radiative transfer model suitable for high direct irradiance, and an Empirical Line Model (ELM) for diffuse irradiance conditions. SNR results for two distinctive vegetation classes (i.e. tree canopy vs herbaceous vegetation) reveal wavelength dependent attenuation by cloud cover, with higher SNR under high direct irradiance for canopy vegetation. Spectral vegetation index (SVIs) results revealed high variability and index dependent effects. For example, NDVI had significant differences (p < 0.05) across illumination conditions, while NDWI appeared insensitive at the canopy level. Finally, often neglected diffuse illumination conditions may be beneficial for revealing spectral features in vegetation that are obscured by the predominantly non-Lambertian reflectance encountered under high direct illumination. To our knowledge, our study is the first to use a full range pushbroom UAV sensor (400–2500 nm) for assessing illumination effects on the aforementioned variables. Our findings pave the way for understanding the advantages and limitations of ultra-high spatial resolution full range high fidelity UAV-HSI for ecological and other applications

    Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment

    Get PDF
    Critical to habitat management is the understanding of not only the location of animal food resources, but also the timing of their availability. Grizzly bear (Ursus arctos) diets, for example, shift seasonally as different vegetation species enter key phenological phases. In this paper, we describe the use of a network of seven ground-based digital camera systems to monitor understorey and overstorey vegetation within species-specific regions of interest. Established across an elevation gradient in western Alberta, Canada, the cameras collected true-colour (RGB) images daily from 13 April 2009 to 27 October 2009. Fourth-order polynomials were fit to an RGB-derived index, which was then compared to field-based observations of phenological phases. Using linear regression to statistically relate the camera and field data, results indicated that 61% (r 2?= 0.61, df = 1, F?= 14.3, p?= 0.0043) of the variance observed in the field phenological phase data is captured by the cameras for the start of the growing season and 72% (r 2?= 0.72, df = 1, F?= 23.09, p?= 0.0009) of the variance in length of growing season. Based on the linear regression models, the mean absolute differences in residuals between predicted and observed start of growing season and length of growing season were 4 and 6 days, respectively. This work extends upon previous research by demonstrating that specific understorey and overstorey species can be targeted for phenological monitoring in a forested environment, using readily available digital camera technology and RGB-based vegetation indices

    Analysis of Implementation the Evaluation of Guidance and Counseling Program at Senior High Schools of Singkawang

    Full text link
    Focus of this study are (1) describe and analyze the implementation of the guidance and counseling program, (2) find some factors inhibiting the implementation of the guidance and counseling program. This study uses qualitative methods; using interview data collecting technique, tested its validity through triangulation. Subjects in this study are all teachers of guidance and counseling in the Senior High School of Singkawang as many as 10 people as well as principals and supervisors as the informants with the total of 11 people. Results (1) the implementation of evaluation of guidance and counseling program by the teachers still has many weaknesses on each phase of the evaluation, such as not understanding the evaluation models of the guidance and counseling program, how to apply them, and monitoring process that is not done in deeply and in detail, (2) Some factors inhibiting the implementation of the evaluation of guidance and counseling program are lack of knowledge and understanding of the evaluation of guidance and counseling program in the schools, lack of interest in developing professional competencies, and lack of guidance to the teachers in implementing the guidance and counseling evaluation program

    Variability of wood properties using airborne and terrestrial laser scanning

    Get PDF
    Information on wood properties is crucial in estimating wood quality and forest biomass and thus developing the precision and sustainability of forest management and use. However, wood properties are highly variable between and within trees due to the complexity of wood formation. Therefore, tree-specific field references and spatially transferable models are required to capture the variability of wood quality and forest biomass at multiple scales, entailing high-resolution terrestrial and aerial remote sensing methods. Here, we aimed at identifying select tree traits that indicate wood properties (i.e. wood quality indicators) with a combination of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) in an examination of 27 even-aged, managed Scots pine (Pinus sylvestris L.) stands in southern Finland. We derived the wood quality indicators from tree models sampled systematically from TLS data and built prediction models with respect to individual crown features delineated from ALS data. The models were incapable of predicting explicit branching parameters (height of the lowest dead branch R2 = 0.25, maximum branch diameter R2 = 0.03) but were suited to predicting stem and crown dimensions from stand, tree, and competition factors (diameter at breast height and sawlog volume R2 = 0.5, and live crown base height R2 = 0.4). We were able to identify the effect of canopy closure on crown longevity and stem growth, which are pivotal to the variability of several wood properties in managed forests. We discussed how the fusions of high-resolution remote sensing methods may be used to enhance sustainable management and use of natural resources in the changing environment.Peer reviewe

    Relating a Spectral Index from MODIS and Tower-based Measurements to Ecosystem Light Use Efficiency for a Fluxnet-Canada Coniferous Forest

    Get PDF
    As part of the North American Carbon Program effort to quantify the terrestrial carbon budget of North America, we have been examining the possibility of retrieving ecosystem light use efficiency (LUE, the carbon sequestered per unit photosynthetically active radiation) directly from satellite observations. Our novel approach has been to compare LUE derived from tower fluxes with LUE estimated using spectral indices computed from MODIS satellite observations over forests in the Fluxnet-Canada Research Network, using the MODIS narrow ocean bands acquired over land. We matched carbon flux data collected around the time of the MODIS mid-day overpass for over one hundred relatively clear days in five years (2001-2006) from a mature Douglas fir forest in British Columbia. We also examined hyperspectral reflectance data collected diurnally from the tower in conjunction with the eddy correlation fluxes and meteorological measurements made throughout the 2006 growing season at this site. The tower-based flux data provided an opportunity to examine diurnal and seasonal LUE processes and their relationship to spectral indices at the scale of the forest stand. We evaluated LUE in conjunction with the Photochemical Reflectance Index (PRI), a normalized difference spectral index that uses 531 nm and a reference band to capture responses to high light induced stress afforded by the xanthophyll cycle. Canopy structure information, retrieved from airborne laser scanning radar (LiDAR) observations, was used to partition the forest canopy into sunlit and shaded fractions throughout the day, on numerous days during 2006. At each observation period throughout a day, the PRI was examined for the sunlit, shaded, and intermediate canopy segments defined by their instantaneous position relative to the solar principal plane (SPP). The sunlit sector was associated with the illumination "hotspot" (the reflectance backscatter maximum), the shaded sector with the "cold or dark spot" (the reflectance forward scatter minimum), while the intermediate, mixed sunlit/shade sector was located in the cross-plane to the SPP. The PRI indices clearly captured the differences in leaf groups, with sunlit foliage exhibiting the lowest values on sunny days throughout the 2006 season. When tower-based canopy-level LUE was recalculated to estimate foliage-based values (LUE(sub foilage) for the three foliage groups under their incident light environments, a strong linear relationship for PRI:LUE(sub foilage) was demonstrated (0.6 less than or equal to r(sup 2) less than or equal to 0.8, n=822, P<0.0001). The MODIS data represent relatively large areas when acquired at nadir (approx.1 sq km) or at variable off-nadir view angles (greater than or equal to 1 sq km) looking forward or aft. Nevertheless, a similar relationship between MODIS PRI and tower-based LUE was obtained from satellite observations (r(sup 2) = 0.76, n=105, P= 0.026) when the azimuth offsets from the SPP for off-nadir observations were considered. At this relatively high latitude of 50 degrees, the MODIS directional observations were offset from the SPP by approximately 50 degrees, but still represented backscatter or forward scatter sectors of the bidirectional reflectance distribution function (BRDF). The backscatter observations sampled the sunlit forest and provided lower PRI values, in general, than the forward scatter observations from the shaded forest. Since the hotspot and darkspot were not typically directly observed, the dynamic range for MODIS PRI was less than that observed in the SPP at the canopy level; therefore, MODIS PRI values were more similar to those observed in sifu in the BRDF cross-plane. While not ideal in terms of spatial resolution or optimal viewing configuration, the MODIS observations nevertheless provide a means to monitor forest under stress using narrow spectral band indices and off-nadir observations. This research has stimulated several spin-off studies for remote sensinf LUE, and demonstrates the importance of the connection between ecosystem structure and physiological function
    corecore